
Sword Blade Generation based on CPPN
 Mikhail Baryshev

G+PM Master’s Student
The University of California Santa Cruz

mbaryshe@ucsc.edu
Supervisor: Jim Whitehead

ABSTRACT

In this paper, CppnSword is described, a tool for generating 2d

pixel blades of swords based on human-driven CPPN-NEAT.

General Terms

Algorithms, Design, Experimentation.

Keywords

PCG, CPPN-NEAT, videogame, sword.

1. INTRODUCTION
We all experience the boom in Procedural Content Generation

research and its applications. CPPNs are already used for 2d picture

generation, like in a website Picbreeder [1]. As for games, CPPNs

were used in Galactic Arms Race [2] in order to generate paths for

projectiles. I wanted to combine those two and to make a CPPN-

based generator for game assets, swords, for instance. There is a

shortage of such sword generators in the field. Swords are just a

step as CPPN-based generators might assist human designers in

designing many in-game assets, especially for role-playing games.

2. SYSTEM DESCRIPTION

2.1 System Overview
The system, made in Java, consists of user interface for driving the

evolution and the underlining logic that keeps the CPPN and does

mutations and crossover.

2.2 User Interface
The program’s interface provides the user with eight possible

sword designs, from with one is chosen and serve as a parent for

further generation. (Seven swords are generated and the parent is

kept on its place.) Those designs are set to fit in the space provided

for them.

In addition, the user can toggle color options between “no color”,

“truncated colors”, “normalization based on one color” (default)

and “normalization of all colors.” There is also a button to start the

evolution over and a selection whether to include sawtooth function

(off by default).

The text is used to help the user to operation the program, including

the description on how to “lock” a sword design so it is not replaced

(represented by a black square in top left corner) and how to case a

crossover (clicks cause mutations by default).

2.3 CPPN Representation
The system stores digraphs for CPPN representation, including

“input”, “output” and “inner nodes”. The input nodes are used as

input to the system; they are represented by a float parameter [0;1]

that surveys the parameters of the sword among the blade length

and a bias parameter, equal to 1. The output nodes provide width

and 3 color channels (RGB) for each value of the input; that is, for

each point along the sword length. The inner nodes contain

mathematical functions including Sine, Gaussian and Sawtooth

(optional) functions. The nodes are connected with each other using

edges that have weight and that serve as multiplications.

CppnSword surveys the network with a set of inputs to get the

output values (width and RGB) for each pixel of height of the

image. The input values are propagated through the network to get

the output values by applying the functions in the nodes and

multiplying by the weight of the edges. When there are several

inputs to an inner of output nodes, the values are added up.

The swords are mirrored among the y-axis to generate good-

looking symmetric swords.

By default, the parameter input is connected to an inner node with

a random function that is connected to the width output.

2.4 NEAT Mutation
When a user selects a sword to make a new generation, the topology

is mutated. If follows the following procedure:

1. A new inner node with an empty function is made.

2. New edges are added, with decaying probability of ½

adding 1 edge, of ¼ of adding 2 edges and so on. Cycle check is

performed.

3. Each edge is mutated with probability of ½ by multiplying

it by a random value from Gaussian function with mean 1.

4. If the new node has no edges connected, it is discarded.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or evil or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Figure 1. UI of CppnSword.

2.5 Crossover
The system is capable of doing one-point crossover between two

swords. The point of crossover is selected to a random point of

closest local width. Then, basically, a switch is introduced that

selects a network given whether the enquiry point is above or below

the point of crossover.

3. EVALUATION
The system is capable of generating objects that looks like swords.

A cyclical nature of sword generation was observed. The

generation was also testes with additional functions. The

differences of visual output due to the color setting was

aesthetically measured.

3.1 The Cyclical Nature of Sword Generation
CppnSword aretfacts look like sword in the first generations. Then,

the artifacts stop resembling swords and lean towards some abstract

figures. If continuing the generation, however, the objects start to

resemble swords again when the width start to be extremely

volatile.

3.2 Function Type Effects
CppnSword used Sine and Gaussian functions as defaults. An

attempt to add a Sawtooth function was made, but the designs tend

to converge unlike the pure Sine-Gaussian approach. However, the

inclusion tend to generate some interesting designs that is why it is

left in the interface, but off by default.

3.3 Color Settings Effect
Originally, the colors were truncated to the domain of [0;1]; given

that the network provided a wide range of output values, the color

was converging to teal or white pretty fast and had no opportunity

to change again. Thus, color normalization was imposed; that is, all

the colors are scaled so the largest color channel value among the

sword is 1.

Then, the option to scale each individual color channel to fit in 1

was introduced. The swords, however, started to look over-

saturated as several channels were able to get to 1 simultaneously.

Thus, more “realistic” normalization based only on one channel is

a default so the other color channels never reach 1; the result is

darker and more diverse colors.

It worth noting that sometimes the swords are not symmetric in

terms of color being on top of the sword’s black shape; being a bug

at first, it was left in the program, as the resulting effect is

aesthetically pleasing.

Figure 2. Result of a crossover between swords 3 and 8.

Note that the “trees” are a result of Sawtooth function.

Figure 4. The “Afterswords” – shapes that resemble

swords again. Generation 57.

Figure 3. An emergence of an “Aftersword”.

Generation 41.

Figure 5. Sawtooth-generated shapes. Generation 86.

4. FUTURE WORK
CppnSword is not well-suited for use in content generation now as

it lacks the functionality to export the sword image or save the

topology. However, it was developed more as a concept and needs

to be upgraded in the terms of content generation at first.

Other function might be used in the network and the change of the

parameters of the generations might be useful to generate better

sword-like content.

Crossovers of swords are an unexplored territory; the current

version of the program is not powerful enough in that regard. There

could be different crossover types, such as superimposing one

sword on another or cross-fading widths and colors.

Moreover, more properties of the swords might be used; for

instance, a curvature of the blade might be generated and in-game

properties, such as damage per hit and magic enchantment, might

be made based on the visual/color appearance of the sword.

A shift from swords to other types of content might be made as

well.

5. CONCLUSION
CppnSword is a tool that is capable of generating swords and

sword-like shapes. Given a relatively simple internal structure, the

generative capabilities of the program are impressive.

I hope we will have more tools to assist game designers in content

creation and, perhaps, that CPPNs are a step in the right direction.

6. ACKNOWLEDGMENTS
I would like to thank everyone who participated in testing of the

software and Jim Whitehead, my supervisor.

7. CPPNSWORD
The source code for the project available at

https://github.com/zemike/CppnSword and a compiled version is

available at http://mbayshev.com/cppnsword.

8. REFERENCES
[1] Picbreeder. [http://picbreeder.org/]

[2] Hastings, E.J.; Guha, R.K.; Stanley, K.O., Evolving content

in the Galactic Arms Race video game, Computational

Intelligence and Games, 2009, 241-248. DOI:

http://dx.doi.org/10.1109/CIG.2009.5286468.

9. APPENDIX: SAMPLE OUTPUTS

Figure 4. Different color settings. From left to right, top-

down: no color, truncated color, 1 normalized, all

normalized.

https://github.com/zemike/CppnSword
http://mbayshev.com/cppnsword
http://picbreeder.org/
http://dx.doi.org/10.1109/CIG.2009.5286468

